1,681 research outputs found

    Characterization of the Outer Barrel Modules for the upgrade of the ALICE Inner Tracking System

    Get PDF
    The Inner Tracking System (ITS) Upgrade of the ALICE detector at CERN is one of the major upgrades that will take place in 2019–2020. This paper regards the construction procedure and the electrical characterization of the Outer Barrel Module. This is the building element of the four outer layers of the ITS and it is realized assembling together fourteen Monolithic Active Silicon Pixel Sensors with a space precision of the order of few microns. The challenge of the production chain, the characterization test procedure and the results of the first produced prototypes will be shown

    ALPIDE for space applications: Power consumption

    Get PDF
    ALPIDE, a monolithic active pixel sensor developed for the ALIDE Inner Tracker upgrade, is studied as possible sensor unit for a space-borne particle tracker. The aspect of power consumption and heat dissipation is investigated

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and ϕ\phi meson in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We present high precision measurements of elliptic flow near midrapidity (y<1.0|y|<1.0) for multi-strange hadrons and ϕ\phi meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy sNN=\sqrt{s_{NN}}= 200 GeV. We observe that the transverse momentum dependence of ϕ\phi and Ω\Omega v2v_{2} is similar to that of π\pi and pp, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30%\% and 30-80%\% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ\phi and proton v2v_{2} at low transverse momentum in the 0-30%\% centrality range, possibly indicating late hadronic interactions affecting the proton v2v_{2}.Comment: 7 pages and 4 figures, Accepted for publication in Physical Review Letter

    Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    Get PDF
    We present measurements of π\pi^- and π+\pi^+ elliptic flow, v2v_2, at midrapidity in Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, AchA_{ch}, based on data from the STAR experiment at RHIC. We find that π\pi^- (π+\pi^+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at sNN=27 GeV\sqrt{s_{_{\rm NN}}} = \text{27 GeV} and higher. At sNN=200 GeV\sqrt{s_{_{\rm NN}}} = \text{200 GeV}, the slope of the difference of v2v_2 between π\pi^- and π+\pi^+ as a function of AchA_{ch} exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.Comment: 6 pages, 4 figure

    Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

    Full text link
    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2}v_2\{2\} and v2{4}v_2\{4\}, for charged hadrons from U+U collisions at sNN\sqrt{s_{\rm NN}} = 193 GeV and Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of v2{2}v_2\{2\} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of v2{2}v_2\{2\} as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.Comment: Final paper version accepted for publication in Phys. Rev. Lett. New version includes comparisons to a constituent quark glauber mode

    Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p+pp^\uparrow+p at s=200\sqrt{s}=200 GeV

    Full text link
    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p+pp^\uparrow+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of five standard deviations at high transverse momenta, at high pseudorapidities eta>0.5, and for pair masses around the mass of the rho-meson. This is the first direct transversity measurement in p+p collisions. Comparing the results to data from lepton-nucleon scattering will test the universality of these spin-dependent quantities.Comment: 11 pages, 5 figures, 15 tables. Submitted to PR

    Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at sNN=19.6\sqrt{s_{NN}} = 19.6 and 200 GeV

    Get PDF
    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity yee<1|y_{ee}|<1 in minimum-bias Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ\rho spectral function for Mee<1.1M_{ee}<1.1 GeV/c2c^{2}. The integrated dielectron excess yield at sNN\sqrt{s_{NN}} = 19.6 GeV for 0.4<Mee<0.750.4<M_{ee}<0.75 GeV/c2c^2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN\sqrt{s_{NN}} = 17.3 GeV. For sNN\sqrt{s_{NN}} = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN\sqrt{s_{NN}} = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV is longer than those in peripheral collisions and at lower energies.Comment: 9 pages, 6 figure
    corecore